证明:(1)连接BE,CE.
DE垂直平分BC,则BE=CE;
EF垂直AB,EG垂直AC,AE平分角BAC,则EF=EG;
所以,Rt⊿EFB≌RtΔEGC(HL),得:BF=CG.
(2)EF=EG,AE=AE,则Rt⊿EFA≌RtΔEGA(HL),AF=AG.
故(1/2)(AB+AC)=(1/2)*[(AF-BF)+(AG+CG)]=(1/2)*(AF+AG)=(1/2)*(AF+AF)=AF.
证明:(1)连接BE,CE.
DE垂直平分BC,则BE=CE;
EF垂直AB,EG垂直AC,AE平分角BAC,则EF=EG;
所以,Rt⊿EFB≌RtΔEGC(HL),得:BF=CG.
(2)EF=EG,AE=AE,则Rt⊿EFA≌RtΔEGA(HL),AF=AG.
故(1/2)(AB+AC)=(1/2)*[(AF-BF)+(AG+CG)]=(1/2)*(AF+AG)=(1/2)*(AF+AF)=AF.