计算量比较大的双曲线问题若直线y=kx+m(k不=0,m不=0)与双曲线x^2/3-y^2=1交于不同的2点M,N,且线

2个回答

  • x^2-3y^2=3

    x^2-3(k^2x^2+2mkx+m^2)=3

    (3k^2-1)x^2+6mkx+3m^2+3=0

    x有2解,所以△>0

    △=36m^2k^2-36m^2k^2+12m^2-36k^2+12

    =12(m^2-3k^2+1)>0

    m^2-3k^2+1>0

    根据韦达定理,x1+x2=-6mk/(3k^2-1)

    所以 y1+y2=kx1+m+kx2+m

    =k(x1+x2)+2m

    =-6mk^2/(3k^2-1)+2m

    =(-6mk^2+6mk^2-2m)/(3k^2-1)

    =-2m/(3k^2-1)

    所以MN中点(-3mk/(3k^2-1),-m/(3k^2-1)

    MN斜率为k

    MN中垂线斜率为-1/k

    MN中垂线方程:y+m/(3k^2-1)=(-1/k)[x+3mk/(3k^2-1)]

    代入A(0,-1)

    -1+m/(3k^2-1)=-3m/(3k^2-1)

    4m/(3k^2-1)=1

    m=(3k^2-1)/4≠0,k≠±√3/3

    △=m^2-3k^2+1=m^2-4m>0

    m>4 或者 m