∵BE平分角ABC,且BE垂直AC于点E,
∴根据等腰三角形"三线合一",可知,三角形ABC是等腰三角形;AB=BC..
∠BAC=∠BCA
又∵∠ABC=45°,
∴∠BAC=∠BCA=(180°-45°)/2=67.5°;
在三角形BCD中,∠BCD=180°-∠ABC-∠BDC
=180°-45°-90°
=45°.
即三角形BCD是等腰直角三角形;
BD=CD;
且:
∠ACD=∠BCA-∠BCD=67.5°-45°
=22.5°;
∠DBF=∠ABC/2=45°/2
=22.5°;
故 ∠ACD=∠DBF.
又因为∠BDC=∠ADC=90°,
BD=CD,
则△BDF≌△ACD (角边角)
∴ BF=AC.
∵三线合一,
∴CE=AE=二分之一AC
=二分之一BF.
连接CG.
∵三角形BCD是等腰直角三角形,
而且H是边BC的中点,即DH是三角形BCD中BC边的中线,
则DH⊥BC;
即DH垂直平分BC.
∴BG=CG.
易知,GF<CG,则GF<BG.
而 BG+GF=BF,
故 BG>二分之一BF.
即 CE<BG