依Cauchy不等式得
f(x)=1·√(x-5)+√3·√(8-x)
≤√[1²+(√3)²]·√[(x-5)+(8-x)]
=2√3.
取等时,
√(x-5)/1=√(8-x)/√3
→x=23/4.
故x=23/4时,所求最大值为:
f(x)|max=2√3.
依Cauchy不等式得
f(x)=1·√(x-5)+√3·√(8-x)
≤√[1²+(√3)²]·√[(x-5)+(8-x)]
=2√3.
取等时,
√(x-5)/1=√(8-x)/√3
→x=23/4.
故x=23/4时,所求最大值为:
f(x)|max=2√3.