∵OB,OA是∠ABC和∠BAC的角平分线
∴∠OAB+∠OBA = (∠ABC+∠BAC)/2 = (180°-∠ACB)/2
∵∠AOE = ∠OAB+∠OBA
∴∠AOE = 90°-∠ACB/2
∵OC是∠ACB的角平分线
∴∠FCB = ∠ACB/2
∴∠AOE = 90°-∠FCB
∴∠AOE和∠FCB互余
∵OB,OA是∠ABC和∠BAC的角平分线
∴∠OAB+∠OBA = (∠ABC+∠BAC)/2 = (180°-∠ACB)/2
∵∠AOE = ∠OAB+∠OBA
∴∠AOE = 90°-∠ACB/2
∵OC是∠ACB的角平分线
∴∠FCB = ∠ACB/2
∴∠AOE = 90°-∠FCB
∴∠AOE和∠FCB互余