顶点坐标为(-2,3)
y=a(x+2)^2+3=ax^2+4ax+(4a+3)
与x轴交于(x1,0),(x2,0)
则x1,x2是方程ax^2+4ax+(4a+3)=0的两个根
所以x1+x2=-4,x1x2=(4a+3)/a
|x1-x2|=6
所以(x1-x2)^2=(x1+x2)^2-4x1x2=6^2
16-4(4a+3)/a=36
16a-16a-12=36a
a=-1/3
y=ax^2+4ax+(4a+3)
所以y=-x^2/3-4x/3+8/3
顶点坐标为(-2,3)
y=a(x+2)^2+3=ax^2+4ax+(4a+3)
与x轴交于(x1,0),(x2,0)
则x1,x2是方程ax^2+4ax+(4a+3)=0的两个根
所以x1+x2=-4,x1x2=(4a+3)/a
|x1-x2|=6
所以(x1-x2)^2=(x1+x2)^2-4x1x2=6^2
16-4(4a+3)/a=36
16a-16a-12=36a
a=-1/3
y=ax^2+4ax+(4a+3)
所以y=-x^2/3-4x/3+8/3