解题思路:虽然A、B两点在河两侧,但连接AB的线段不垂直于河岸.关键在于使AM+BN最短,但AM与BN未连起来,要用线段公理就要想办法使M与N重合起来,利用平行四边形的特征可以实现这一目的.
如图,作BB'垂直于河岸GH,使BB′等于河宽,
连接AB′,与河岸EF相交于M,作MN⊥GH,
则MN∥BB′且MN=BB′,
于是MNBB′为平行四边形,故NB=MB′.
根据“两点之间线段最短”,AB′最短,即AM+BN最短.
故桥建立在MN处符合题意.
点评:
本题考点: 作图—应用与设计作图.
考点点评: 此题考查了轴对称---最短路径问题,要利用“两点之间线段最短”,但许多实际问题没这么简单,需要我们将一些线段进行转化,即用与它相等的线段替代,从而转化成两点之间线段最短的问题.目前,往往利用对称性、平行四边形的相关知识进行转化,以后还会学习一些线段转化的方法.