解题思路:根据复合函数的单调性和对数函数的性质可知a>1,再由t=3-ax在[0,2)上应有t>0,可知3-2a>0.得a<[3/2].
设t=3-ax,
∵a>0且a≠1,
∴t=3-ax为减函数.
依题意a>1,又t=3-ax在[0,2)上应有t>0,
只须3-2a>0.∴a <
3
2.
故1<a<[3/2].
故答案为:(1,[3/2])
点评:
本题考点: 对数函数的单调性与特殊点.
考点点评: 本题主要考查了对数函数的单调性与特殊点,要掌握复合函数的单调性的判定方法:同增异减.属于基础题.