tanB/tanC=(2a-c)/c=(2sinA-sinC)/sinC
即sinB*cosC=2sinA*cosB-sinC*cosB
所以,移项利用正弦的和角公式得sin(B+C)=2sinA*cosB=sinA
所以cosB=1/2
所以B=60
而sinA/sinC=根号3-1,所以sin(120-C)/sinC=根号3-1
所以cotC=2-根号3.所以C=75度,A=45度.B=60度
tanB/tanC=(2a-c)/c=(2sinA-sinC)/sinC
即sinB*cosC=2sinA*cosB-sinC*cosB
所以,移项利用正弦的和角公式得sin(B+C)=2sinA*cosB=sinA
所以cosB=1/2
所以B=60
而sinA/sinC=根号3-1,所以sin(120-C)/sinC=根号3-1
所以cotC=2-根号3.所以C=75度,A=45度.B=60度