一中心在原点,对称轴为坐标轴的椭圆与直线
0
0

1个回答

  • 设椭圆方程为x^2/a^2+y^2/b^2=1

    联立椭圆与抛物线得

    (a^2+b^2)*x^2-6a^2*x+9a^2-a^2*b^2=0

    所以x(A)+x(B)=6a^2/(a^2+b^2)

    y(A)+y(B)=6b^2/(a^2+b^2)

    x(A)*x(B)=(9a^2-a^2*b^2)/(a^2+b^2)

    得中点C[3a^2/(a^2+b^2),3b^2/(a^2+b^2)]

    OC的斜率为2,即b^2/a^2=2

    |AB| =根号下[(x(A)-x(B))^2+(y(A)-y(B))^2]

    =根号下2*(x(A)-x(B))^2

    =根号下2*[(x(A)+x(B))^2-4x(A)*x(B)]

    所以a^2=9/2,b^2=9

    椭圆方程为2*x^2/9+y^2/9=1