上式=(1/2+1/3.+1/2009)+(1/2+1/3.+1/2009)*(1/2+1/3..+1/2008)-(1/2+1/3..+1/2008)-(1/2+1/3.+1/2009)*(1/2+1/3..+1/2008)=1/2009
(1/2+1/3.+1/2009)*(1+1/2+1/3..+1/2008)-(1+1/2+1/3..+1/2009)*
1个回答
相关问题
-
(1/2+1/3+...1/2009)(1+1/2+1/3+...1/2008)-(1+1/2+1/2009)(1/2+
-
|1/2-1|+|1/3-1/2|+1/4-1/3|+...|1/2009-1/2008|+|1/2010-1/2009
-
(1/2010*1/2009*1/2008*...*1/3*1/2*1)^2011*(2010*2009*2008*..
-
1/1*2+1/2*3+1/3*4+...+1/2007*2008+1/2008*2009
-
1/2*1+1/3*2+1/4*3.+1/2009*2008=
-
1/(√2009+√2008)+1/(√2008+√2007)+.+1/(√3+√2)+1/(√2+1)
-
|1/2009-1/2008|+|1/2008-1/2007|+……+|1/3-1/2|+|1/2-1|=?
-
求{1/(1+√2)+1/(√2+√3)+1/(√3+√4)+...+1/(√2008+√2009)
-
2009*(1+1/2+1/3+……+1/2008)-[1+(1+1/2+)+(1+1/2+3/1)+……+1+1/2+
-
计算1+2+3+…+2008+2009+2008+…+3+2+1