证明:联结AO.
△ABC为等腰三角形 => ∠B=∠C
已知 AB=AC OB=OC
=> △OAB全等于△OAC
=> ∠OAB=∠OAC
=> OA为∠BAC的角平分线
=> O点到AB、AC两边的距离相等
因圆O与AB相切,故圆O也与AC相切
证明:联结AO.
△ABC为等腰三角形 => ∠B=∠C
已知 AB=AC OB=OC
=> △OAB全等于△OAC
=> ∠OAB=∠OAC
=> OA为∠BAC的角平分线
=> O点到AB、AC两边的距离相等
因圆O与AB相切,故圆O也与AC相切