注意:
∫ ƒ'(x) dx = ∫ dƒ(x) = ƒ(x) + C
[∫ ƒ(x) dx]' = ƒ(x)
ƒ'(e^x) = 1 + x
令t = e^x,x = lnt
ƒ'(t) = 1 + lnt,两边取积分(注意积分和导数互为相反过程,去除导数的话当然是求积分了)
ƒ(t) = ∫ (1 + lnt) dt = t + tlnt - t + C = tlnt + C
即ƒ(x) = xlnx + C
注意:
∫ ƒ'(x) dx = ∫ dƒ(x) = ƒ(x) + C
[∫ ƒ(x) dx]' = ƒ(x)
ƒ'(e^x) = 1 + x
令t = e^x,x = lnt
ƒ'(t) = 1 + lnt,两边取积分(注意积分和导数互为相反过程,去除导数的话当然是求积分了)
ƒ(t) = ∫ (1 + lnt) dt = t + tlnt - t + C = tlnt + C
即ƒ(x) = xlnx + C