高数 定积分解题 急 中间的不要

1个回答

  • (1)原式=∫√x*2√xd(√x)/(1+x) (dx=2√xd(√x))

    =2∫[1-1/(1+(√x)²)]d(√x)

    =2[√x-arctan(√x)]│

    =2(1-π/4)

    =2-π/2;

    (3)原式=∫(sint)^4*cost*costdt (令x=sint)

    =(1/8)∫[(1-cos(2t))/2][sin²(2t)/4]dt (应用倍角公式)

    =(1/8)∫[1/2-cos(4t)/2-cos(2t)sin²(2t)]dt (再次应用倍角公式)

    =(1/8)[t/2-sin(4t)/8-sin³(2t)/6]│

    =(1/8)(π/2)/2

    =π/32.