解y=(ax+b)÷(cx+d)
=(a/c(cx+d)+b-ad/c)÷(cx+d)
=(a/c(cx+d)+bc/c-ad/c)÷(cx+d)
=(a/c(cx+d)+(bc-ad)/c)÷(cx+d)
=a/c+[(bc-ad)/c]÷(cx+d)
由ad≠bc知(bc-ad)/c≠0
即[(bc-ad)/c]÷(cx+d) ≠0
即a/c+[(bc-ad)/c]÷(cx+d) ≠a/c
即y≠a/c
故函数的值域为{y/y≠a/c}
解y=(ax+b)÷(cx+d)
=(a/c(cx+d)+b-ad/c)÷(cx+d)
=(a/c(cx+d)+bc/c-ad/c)÷(cx+d)
=(a/c(cx+d)+(bc-ad)/c)÷(cx+d)
=a/c+[(bc-ad)/c]÷(cx+d)
由ad≠bc知(bc-ad)/c≠0
即[(bc-ad)/c]÷(cx+d) ≠0
即a/c+[(bc-ad)/c]÷(cx+d) ≠a/c
即y≠a/c
故函数的值域为{y/y≠a/c}