An(xn,yn) An+1(xn+1,yn+1) yn=xn^2,yn+1=xn+1^2(An,An+1在抛物线上)
xn+1^2-xn^2=(k0^n+1)(xn+1-xn) (直线方程) 化简:xn+1+xn=k0^n+1(因为An,An+1互异)
xn+1=K0^n+1-xn(n≠0) x1=k0,x2=k0^2-k0+1,x3自己算
xn=k0^(n-1)+1-(xn-1)=K0^(n-1)+1-K0^(n-2)-1+(Xn-2)=K0^(n-1)-K0^(n-2)+K0^(n-3)+1-(Xn-3)
迭代:xn=K0^(n-1)-K0^(n-2)+K0^(n-3)...-K0+X1(n为奇数且n大于2)
xn=K0^(n-1)-K0^(n-2)+K0^(n-3)...-K0+X1+1(n为偶数)