F(s)= ∫ (0,∞) e^(-at)e^(-st)dt
={e^[-(s+a)t]/-(s+a) (t=0,∞)=1/(s+a)
sint=(1/(2i))(e^(it)-e^(-it))
F(s)= ∫ (0,∞) sin(t) e^(-st) dt
=(1/(2i)) ∫ (0,∞) (e^(it)-e^(-it)) e^(-st) dt
= (1/(2i)) [1/(s-i) - 1/(s+i)]
=1/(s^2+1)
F(s)= ∫ (0,∞) e^(-at)e^(-st)dt
={e^[-(s+a)t]/-(s+a) (t=0,∞)=1/(s+a)
sint=(1/(2i))(e^(it)-e^(-it))
F(s)= ∫ (0,∞) sin(t) e^(-st) dt
=(1/(2i)) ∫ (0,∞) (e^(it)-e^(-it)) e^(-st) dt
= (1/(2i)) [1/(s-i) - 1/(s+i)]
=1/(s^2+1)