n是等比,则 [2^(a2+1)]=2^(a1+1)x2^(a3+1)
(a2+1)^2=a1+1+a3+1=4
a2=1
an=n-1
bn=2^n
cn=(n-1)2^n
Sn=0x2^1+1x2^2+2x3^ +...+(n-1)2^n
2Sn=0x2^2+1x2^3 +...+(n-2)2^n+(n-1)2^(n+1)
2Sn-Sn=(n-1)2^(n+1)-(2^2+2^3+...+2^n)
Sn=(2n-3)2^n
n是等比,则 [2^(a2+1)]=2^(a1+1)x2^(a3+1)
(a2+1)^2=a1+1+a3+1=4
a2=1
an=n-1
bn=2^n
cn=(n-1)2^n
Sn=0x2^1+1x2^2+2x3^ +...+(n-1)2^n
2Sn=0x2^2+1x2^3 +...+(n-2)2^n+(n-1)2^(n+1)
2Sn-Sn=(n-1)2^(n+1)-(2^2+2^3+...+2^n)
Sn=(2n-3)2^n