求助一道中值定理的题目.设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,试证ξf'(ξ)+2f(ξ)=
1个回答
ξf'(ξ)+2f(ξ) = f(ξ) ξf'(ξ)+f(ξ) = 0,
好像做不出来,有没错?
相关问题
f(x)在[0,1]上二阶可导,且f(0)=f(1)=0,试证:存在ξ∈(0,1),使f``(ξ)=2f`(ξ)/1-ξ
微分中值定理的题目函数f(x)在(0,1)上连续且可导,且f(0)=0,f(1)=1/2证:存在两点ξ1、ξ2属于(0,
f(x)在[0,1]连续,在(0,1)可导,f(0)=f(1)=0,证(0,1)存在ξ,f'(ξ)+2f(ξ)=0
设f(x)在[0a]上连续,在(0a)内可导,且f'(a)=0,证明存在一点ξ满足f(ξ)+ξ f'(ξ)=0
设f(x)在[0,x]上连续,在(0,x)内可导,且f(0)=0,证明:存在ξ∈(0,x),使得f(x)=(1+ξ)f’
设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1,证明存在ξ∈(0,1),使得f(ξ)=1
设函数f(x)在[0,1]上可导,且满足f(1)=0,求证:在(0,1)内至少存在一点ξ,使f′(ξ)=-f(ξ)ξ.(
一道高数证明题设f(x)在[0,π]上连续,在(0,π)内可导,求证存在ξ∈(0,π),使f'(ξ)=-f(ξ)cotξ
设函数f(x)在[0,1]上连续且不恒为零,在(0,1)内可导,且f(0)=0,证明:存在ξ∈(0,1),使得f(ξ)f
已知f(x)在[0,1]上连续,在(0,1)上可导,且f(1)=0求证至少存在一点ξ∈(0,1).使f'(ξ)=-f(ξ