首先容易得到C点坐标为:(XA+XB,YA+YB)
设椭圆方程为:(x/a)²+(y/b)²=1
则直线方程为:y=x-√(a²-b²)
合并得:
(a²+b²)x²-2a√(a²-b²)x+a²(a²-2b²)=0
所以XA+XB=2a√(a²-b²)/(a²+b²)=2e/(2-e²)
(因为e=√(a²-b²)/a,演算可得)
YA+YB=2e/(2-e²)-2ae
C点在椭圆上,因此满足椭圆方程式代入求e即可.
首先容易得到C点坐标为:(XA+XB,YA+YB)
设椭圆方程为:(x/a)²+(y/b)²=1
则直线方程为:y=x-√(a²-b²)
合并得:
(a²+b²)x²-2a√(a²-b²)x+a²(a²-2b²)=0
所以XA+XB=2a√(a²-b²)/(a²+b²)=2e/(2-e²)
(因为e=√(a²-b²)/a,演算可得)
YA+YB=2e/(2-e²)-2ae
C点在椭圆上,因此满足椭圆方程式代入求e即可.