答:
f(x)=x²[e^(-ax)]
1)
a=1,f(x)=x²/e^x
求导:f'(x)=2x/e^x-x²/e^x
x=-1时,f'(-1)=-2e-e=-3e
x=-1时,f(-1)=e
所以:切线方程为y-e=-3e(x+1)=-3ex-3e
所以:切线方程为y=-3ex-2e
2)
a>0
f'(x)=2xe^(-ax)-ax²e^(-ax)=x(2-ax)e^(-ax)
解f'(x)=0得:x=0或者x=2/a>0
x2/a时,f'(x)
答:
f(x)=x²[e^(-ax)]
1)
a=1,f(x)=x²/e^x
求导:f'(x)=2x/e^x-x²/e^x
x=-1时,f'(-1)=-2e-e=-3e
x=-1时,f(-1)=e
所以:切线方程为y-e=-3e(x+1)=-3ex-3e
所以:切线方程为y=-3ex-2e
2)
a>0
f'(x)=2xe^(-ax)-ax²e^(-ax)=x(2-ax)e^(-ax)
解f'(x)=0得:x=0或者x=2/a>0
x2/a时,f'(x)