已知集合A={x|x=3n+1,n∈Z},B={x|x=3n+2,n∈Z},M={x|x=6n+3,n∈Z},对于任意a

1个回答

  • 解题思路:根据已知条件知:若a∈A,b∈B,则一定存在n1,n2∈z,使得a=3n1+1,b=3n2+1,所以a+b=3(n1+n2)+3.而集合M的元素需满足:x=6n+3=3•2n+3,显然n1+n2不一定等于2n,所以不一定有a+b=m且m∈M.

    ∵a∈A,b∈B;2

    ∴分别存在n1,n2∈z使得:

    a=3n1+1,b=3n2+2;

    ∴a+b=3(n1+n2)+3;

    而集合M中的条件是:x=6n+3=3•2n+3;

    ∴要使a+b∈M,则n1+n2=2n,这显然不一定;

    ∴不一定有a+b=m且m∈M.

    点评:

    本题考点: 元素与集合关系的判断.

    考点点评: 本题考查描述法表示集合,元素与集合的关系,以及描述法表示一个集合时,如何判断一个元素是否是这个集合的元素.