L1:ax-2y-2a+4=0交y轴于M(0,2-a);L2:2x+a²y-2a²-4=0交x轴于点N(a²+2,0)
且这两条直线的交点是Q(2,2),则四边形的面积S=三角形ONQ的面积+三角形OMQ的面积=(1/2)[2(2-a)+2(a²+2)]=a²-a+4=[a-(1/2)]²+(15/4),则当S最小时,S的最小值是15/4,此时a=1/2,则此时L1:x-4y+6=0,L2:8x+y-18=0
L1:ax-2y-2a+4=0交y轴于M(0,2-a);L2:2x+a²y-2a²-4=0交x轴于点N(a²+2,0)
且这两条直线的交点是Q(2,2),则四边形的面积S=三角形ONQ的面积+三角形OMQ的面积=(1/2)[2(2-a)+2(a²+2)]=a²-a+4=[a-(1/2)]²+(15/4),则当S最小时,S的最小值是15/4,此时a=1/2,则此时L1:x-4y+6=0,L2:8x+y-18=0