(1)∵DE⊥CE,∴ ∠BEC+∠AED=90°,∵ ∠A=90°,∴∠ADE+∠AED=90°,∴∠ADE=∠BEC,∵ ∠A=∠B,∴ △ADE∽△BEC
(2)延长DE交CB的延长线于F,∵∠ A=∠EBF,∠AED=∠BEF,AE=BE,∴△AED≌△BEF,∴DE=FE,AD=BF,∴AD+BC=CF,∵CE=CE,∠DEC=FEC,DE=FE,∴△DEC≌ △FEC,∴DC=FC,∴AD+BC=CD
∵ △DEC≌ △FEC,∴∠DCE=∠FCE,∴CE平分∠BCD,∵ ∠F=∠EDC,∠F=∠ADE,∴∠EDC=∠ADE,∴DE平分∠ADC
(3)设AD=x,由已知AD+DE=AB=a得DE=a-x,又AE=m
在Rt△AED中,由勾股定理得:x^2+m^2=(a-x)^2
化简整理得:a^2-m^2=2ax.①
在△EBC中,由AE=m,AB=a,得BE=a-m
因为△ADE∽△BEC,
所以AD/BE=AE/BC=DE/EC,
即:x/(a-m)=m/BC=(a-x)/EC,
解得:
BC=(a-m)m/x,
EC=(a-m)(a-x)/x.
所以△BEC的周长=BE+BC+EC=(a-m)+(a-m)m/x+(a-m)(a-x)/x
=(a-m)(1+m/x+(a-x)/x)=(a-m)(a+m)/x
=(a2-m2)/x.②
把①式代入②式,得△BEC的周长=BE+BC+EC=2ax/x=2a,
所以△BEC的周长与m无关.