已知函数f(x)=4cosxsin(x-π/3)-√3

1个回答

  • 第一个问题:

    f(x)=4cosx[sinxcos(π/3)-cosxsin(π/3)]-√3

    =4cosx[(1/2)sinx-(√3/2)cosx]-√3

    =2sinxcosx-2√3(cosx)^2-√3

    =sin2x-√3(1+cos2x)-√3

    =2[(1/2)sin2x-(√3/2)cos2x]-2√3

    =2[sin2xcos(π/3)-cos2xsin(π/3)]-2√3

    =2sin(2x-π/3)-2√3.

    ∵π/4≦x≦π/2,∴π/2≦2x≦π,∴π/2-π/3≦2x-π/3≦π-π/3,∴π/6≦2x-π/3≦2π/3,

    ∴√3/2≦sin(2x-π/3)≦1,∴√3≦2sin(2x-π/3)≦2,

    ∴√3-2√3≦2sin(2x-π/3)-2√3≦2-2√3,∴-√3≦f(x)≦2-2√3.

    ∴f(x)在区间[π/4,π/2]的值域是[-√3,2-2√3].

    第二个问题:

    你可能是忙中出错了!

    ∵f(x)=2sin(2x-π/3)-2√3,∴f(C)=2sin(2C-π/3)-2√3.

    在锐角△ABC中,显然有0<C<π/2,∴0<2C<π,∴-π/3<2C-π/3<π-π/3,

    ∴-√3/2≦sin(2x-π/3)≦1,∴-√3≦2sin(2x-π/3)≦2,

    ∴-2√3≦2sin(2x-π/3)-2√3≦2-2√3,∴-2√3≦f(C)≦2-2√3<0.

    ∴f(C)不可能为√3.

    我估计是你将-√3写成了√3.若是这样,则方法如下:

    ∵f(C)=-√3,∴2sin(2x-π/3)-2√3=-√3,∴2sin(2x-π/3)=√3,

    ∴sin(2x-π/3)=√3/2.

    ∵-π/3<2C-π/3<π-π/3,∴2C-π/3=π/3,∴C=π/3,∴sinC=√3/2、cosC=1/2.

    由余弦定理,有:c^2=a^2+b^2-2abcosC=a^2+b^2-ab≧2√(a^2b^2)-ab=ab.

    ∴ab≦c^2=4.

    ∴△ABC的面积=(1/2)absinC≦(1/2)×4×(√3/2)=√3.

    ∴△ABC面积的最大值为√3.

    注:请你认真核查原题,若原题中第二个问题不是我所猜测的那样,则请你补充说明.