证明:在AC边上取点G,使AG=AF,连接OG
∵∠B=60
∴∠BAC+∠ACB=180-∠B=120
∵AE平分∠BAC,CF平分∠ACB
∴∠CAE=∠BAE=∠BAC/2,∠ACF=∠BCF=∠ACB/2
∴∠AOF=∠COE=∠CAE+∠ACF=(∠BAC+∠ACB)/2=120/2=60
∴∠AOC=180-∠AOF=180-60=120
∵AG=AF
∴△AOG≌△AOF (SAS)
∴∠AOG=∠AOF=60
∴∠COG=∠AOC-∠AOG=120-60=60
∴∠COG=∠COE
∵OC=OC
∴△COG≌△COE (ASA)
∴CG=CE
∵AC=AG+CG
∴AC=AF+CE.