求正弦余弦正切余切之类的所有关系等式

1个回答

  • 同角三角函数间的基本关系式  ·平方关系:

    (sinx)^2+(cosx)^2=1

    1+(tanx)^2=(secx)^2

    1+(cotx)^2=(cscx)^2

    ·积的关系:

    sinα=tanα×cosα

    cosα=cotα×sinα

    tanα=sinα×secα

    cotα=cosα×cscα

    secα=tanα×cscα

    cscα=secα×cotα

    ·倒数关系:

    tanα ·cotα=1

    sinα ·cscα=1

    cosα ·secα=1

    商的关系:

    sinα/cosα=tanα=secα/cscα

    cosα/sinα=cotα=cscα/secα

    直角三角形ABC中,

    角A的正弦值就等于角A的对边比斜边,

    余弦等于角A的邻边比斜边

    正切等于对边比邻边,

    对称性

    180度-α的终边和α的终边关于y轴对称.

    -α的终边和α的终边关于x轴对称.

    180度+α的终边和α的终边关于原点对称.

    180度/2-α的终边关于y=x对称.[编辑本段]三角函数恒等变形公式  ·两角和与差的三角函数:

    cos(α+β)=cosα·cosβ-sinα·sinβ

    cos(α-β)=cosα·cosβ+sinα·sinβ

    sin(α±β)=sinα·cosβ±cosα·sinβ

    tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)

    tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

    ·三角和的三角函数:

    sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ

    cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

    tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

    ·辅助角公式:

    Asinα+Bcosα=√(A²+B²)sin(α+arctan(B/A)),其中

    sint=B/√(A²+B²)

    cost=A/√(A²+B²)

    tant=B/A

    Asinα-Bcosα=√(A²+B²)cos(α-t),tant=A/B

    ·倍角公式:

    sin(2α)=2sinα·cosα=2/(tanα+cotα)

    cos(2α)=(cosα)^2-(sinα)^2=)=2(cosα)^2-1=1-2(sinα)^2

    tan(2α)=2tanα/(1-tan²α)

    ·三倍角公式:

    sin(3α) = 3sinα-4sin³α = 4sinα·sin(60°+α)sin(60°-α)

    cos(3α) = 4cos³α-3cosα = 4cosα·cos(60°+α)cos(60°-α)

    tan(3α) = (3tanα-tan³α)/(1-3tan³α) = tanαtan(π/3+α)tan(π/3-α)

    ·半角公式:

    sin(α/2)=±√((1-cosα)/2)

    cos(α/2)=±√((1+cosα)/2)

    tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα

    ·降幂公式

    sin²α=(1-cos(2α))/2=versin(2α)/2

    cos²α=(1+cos(2α))/2=covers(2α)/2

    tan²α=(1-cos(2α))/(1+cos(2α))

    ·万能公式:

    sinα=2tan(α/2)/[1+tan²(α/2)]

    cosα=[1-tan²(α/2)]/[1+tan²(α/2)]

    tanα=2tan(α/2)/[1-tan²(α/2)]

    ·积化和差公式:

    sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]

    cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]

    cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]

    sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]

    ·和差化积公式:

    sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]

    sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]

    cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]

    cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]

    ·推导公式

    tanα+cotα=2/sin2α

    tanα-cotα=-2cot2α

    1+cos2α=2cos²α

    1-cos2α=2sin²α

    1+sinα=[sin(α/2)+cos(α/2)]²

    ·其他:

    sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0

    cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及

    sin²(α)+sin²(α-2π/3)+sin²(α+2π/3)=3/2

    tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0

    cosx+cos2x+...+cosnx= [sin(n+1)x+sinnx-sinx]/2sinx

    证明:

    左边=2sinx(cosx+cos2x+...+cosnx)/2sinx

    =[sin2x-0+sin3x-sinx+sin4x-sin2x+...+ sinnx-sin(n-2)x+sin(n+1)x-sin(n-1)x]/2sinx (积化和差)

    =[sin(n+1)x+sinnx-sinx]/2sinx=右边

    等式得证

    sinx+sin2x+...+sinnx= - [cos(n+1)x+cosnx-cosx-1]/2sinx

    证明:

    左边=-2sinx[sinx+sin2x+...+sinnx]/(-2sinx)

    =[cos2x-cos0+cos3x-cosx+...+cosnx-cos(n-2)x+cos(n+1)x-cos(n-1)x]/(-2sinx)

    =- [cos(n+1)x+cosnx-cosx-1]/2sinx=右边

    等式得证

    三倍角公式推导

    sin3a

    =sin(2a+a)

    =sin2acosa+cos2asina

    =2sina(1-sin²a)+(1-2sin²a)sina

    =3sina-4sin³a

    cos3a

    =cos(2a+a)

    =cos2acosa-sin2asina

    =(2cos²a-1)cosa-2(1-cos²a)cosa

    =4cos³a-3cosa

    sin3a=3sina-4sin³a

    =4sina(3/4-sin²a)

    =4sina[(√3/2)²-sin²a]

    =4sina(sin²60°-sin²a)

    =4sina(sin60°+sina)(sin60°-sina)

    =4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°+a)/2]

    =4sinasin(60°+a)sin(60°-a)

    cos3a=4cos³a-3cosa

    =4cosa(cos²a-3/4)

    =4cosa[cos²a-(√3/2)²]

    =4cosa(cos²a-cos²30°)

    =4cosa(cosa+cos30°)(cosa-cos30°)

    =4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]}

    =-4cosasin(a+30°)sin(a-30°)

    =-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]

    =-4cosacos(60°-a)[-cos(60°+a)]

    =4cosacos(60°-a)cos(60°+a)

    上述两式相比可得

    tan3a=tanatan(60°-a)tan(60°+a)[编辑本段]三角函数的诱导公式  公式一:

    设α为任意角,终边相同的角的同一三角函数的值相等:

    sin(2kπ+α)=sinα

    cos(2kπ+α)=cosα

    tan(2kπ+α)=tanα

    cot(2kπ+α)=cotα

    公式二:

    设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:

    sin(π+α)=-sinα

    cos(π+α)=-cosα

    tan(π+α)=tanα

    cot(π+α)=cotα

    公式三:

    任意角α与 -α的三角函数值之间的关系:

    sin(-α)=-sinα

    cos(-α)=cosα

    tan(-α)=-tanα

    cot(-α)=-cotα

    公式四:

    利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:

    sin(π-α)=sinα

    cos(π-α)=-cosα

    tan(π-α)=-tanα

    cot(π-α)=-cotα

    公式五:

    利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:

    sin(2π-α)=-sinα

    cos(2π-α)=cosα

    tan(2π-α)=-tanα

    cot(2π-α)=-cotα

    公式六:

    π/2±α及3π/2±α与α的三角函数值之间的关系:

    sin(π/2+α)=cosα

    cos(π/2+α)=-sinα

    tan(π/2+α)=-cotα

    cot(π/2+α)=-tanα

    sin(π/2-α)=cosα

    cos(π/2-α)=sinα

    tan(π/2-α)=cotα

    cot(π/2-α)=tanα

    sin(3π/2+α)=-cosα

    cos(3π/2+α)=sinα

    tan(3π/2+α)=-cotα

    cot(3π/2+α)=-tanα

    sin(3π/2-α)=-cosα

    cos(3π/2-α)=-sinα

    tan(3π/2-α)=cotα

    cot(3π/2-α)=tanα

    (以上k∈Z)