证明:延长BE和AC,交于点M.
BE⊥AE,则∠AEB=∠AEM=90°;
又∠BAE=∠MAE,AE=AE,则⊿BAE≌ΔMAE(ASA),EB=EM.
∵BE⊥AE;CF⊥AE,则BE∥FC.
∴AF/AE=FC/EM=FC/EB=PC/PE.
即AF/AE=PC/PE,AF/FE=PC/CE,则CF∥AP.
证明:延长BE和AC,交于点M.
BE⊥AE,则∠AEB=∠AEM=90°;
又∠BAE=∠MAE,AE=AE,则⊿BAE≌ΔMAE(ASA),EB=EM.
∵BE⊥AE;CF⊥AE,则BE∥FC.
∴AF/AE=FC/EM=FC/EB=PC/PE.
即AF/AE=PC/PE,AF/FE=PC/CE,则CF∥AP.