x^2+y^2-4x+1=0 等价变换为(x-2)^2+y^2=3
这是一个以点(2,0)为圆心,半径为√3的圆
(注:你自己画个图,然后再看下面的解法)
(1) 设y/x=k,即y=kx k≠0
当y=kx与圆相切的时候,y/x取得极值
即y=kx与圆只有一个交点的时候,y/x取得极值
将y=kx 代入x^2+y^2-4x+1=0,
(1+k^2)x^2-4x+1=0
△=4^2-4*(1+k^2)*1=12-4k^2=0
解得k=√3 或者k=-√3
因此,y/x最大值为√3
(2)令y-x=k,当y-x=k与圆相切时,y-x取得极值
将y-x=k 代入x^2+y^2-4x+1=0,
2x^2+(2k-4)x+k^2+1=0
△=(2k-4)^2-4*2*(k^2+1)=-4(k^2+4k-2)=0
解得 k=√6-2 或者 k=-√6-2
因此,y-x的最小值为 k=-√6-2
(3)x^2+y^2-4x+1=0,
x^2+y^2=4x-1
x^2+y^2的值随x变化而变化.是不是条件给少了?