(-π/12,π/6)内
f(x)=2sin(2x+π/6)的值域为0到1
所以(f(x))^2-f(x)+m=0在(-π/12,π/6)内只有一解可以理解为
方程X^2-X+m=0在0到1只有一个解
对称轴为1/2
所以在0到1只有一个解是不可能的
(-π/12,π/6)内
f(x)=2sin(2x+π/6)的值域为0到1
所以(f(x))^2-f(x)+m=0在(-π/12,π/6)内只有一解可以理解为
方程X^2-X+m=0在0到1只有一个解
对称轴为1/2
所以在0到1只有一个解是不可能的