1.已知tanα和tan(π/4-α)是方程x^2+px+q=0的两个根,若3tanα=tan(π/4-α)求q,p

1个回答

  • 1

    tanα和tan(π/4-α)是方程x^2+px+q=0的两个根,

    ∴tanα+tan(π/4-α)=-p/2;

    tanα·tan(π/4-α)=q/2;

    3tanα=tan(π/4-α),则

    4tanα=-p/2;p=-8tanα

    3(tanα)^2=q/2;q=6(tanα)^2.

    3tanα=tan(π/4-α)

    =(tanπ/4-tanα)/(1+tanπ/4·tanα)

    =(1-tanα)/(1+tanα)

    ∴tanα=(-2±√7)/3

    代入p=-8tanα,q==6(tanα)^2即可救出

    2

    已知tanα=√3(tanαtanβ+m),又α,β都是钝角,求α+β的值

    tanα=√3(tanαtanβ+m),

    tanα(1-√3tanβ)=√3m;

    tanα[(√3+tanβ)/tan(π/3+β)]=√3m;

    .