1.作MP⊥AB于P,连NP.
∵正方形ABCD,
∴MP‖BC,
∴AM/AC=AP/AB,
又正方形ABEF,AM=FN,
∴BF=AC,FN/FB=AM/AC=AP/AB,
∴NP‖AF,
∴NP⊥AB,
∴AB⊥平面MNP,
∴MN⊥AB.
2.由1,MP=x/√2,NP=(a√2-x)/√2,
MN^2=MP^2+NP^2=(1/2)(x^2+2a^2-2ax√2+x^2)=x^2-ax√2+a^2
=[x-(a√2)/2]^2+a^2/2,
∴当x=(a√2)/2时,MN取最小值(a√2)/2.