∵四边形ABCD是正方形,
∴AD=DC,∠ADC=90度.
又∵AE⊥DG,CF∥AE,
∴∠AED=∠DFC=90°,
∴∠EAD+∠ADE=∠FDC+∠ADE=90°,
∴∠EAD=∠FDC.
∴△AED≌△DFC(AAS).
∵△AED≌△DFC,
∴AE=DF,ED=FC.
∵DF=DE+EF,
∴AE=FC+EF.
∵四边形ABCD是正方形,
∴AD=DC,∠ADC=90度.
又∵AE⊥DG,CF∥AE,
∴∠AED=∠DFC=90°,
∴∠EAD+∠ADE=∠FDC+∠ADE=90°,
∴∠EAD=∠FDC.
∴△AED≌△DFC(AAS).
∵△AED≌△DFC,
∴AE=DF,ED=FC.
∵DF=DE+EF,
∴AE=FC+EF.