由b+1/c=1,得:b=1-1/c=(c-1)/c,则1/b=c/(c-1),
由c+1/a=1,得:1/a=1-c,则a=1/(1-c),
所以
a+1/b
=1/(1-c)+c/(c-1)
=1/(1-c)-c/(1-c)
=(1-c)/(1-c)
=1
由b+1/c=1,得:b=1-1/c=(c-1)/c,则1/b=c/(c-1),
由c+1/a=1,得:1/a=1-c,则a=1/(1-c),
所以
a+1/b
=1/(1-c)+c/(c-1)
=1/(1-c)-c/(1-c)
=(1-c)/(1-c)
=1