解题思路:(1)化函数f(x)=sinxcosφ+cosxsinφ,为f(x)=sin(x+φ),直接求函数f(x)的最小正周期;
(2)把
(
π
6
,
1
2
)
代入函数
y=f(2x+
π
6
)
,根据0<φ<π求φ的值.
(1)∵f(x)=sin(x+φ),
∴函数f(x)的最小正周期为2π.
(2)∵函数y=f(2x+
π
6)=sin(2x+
π
6+φ),
又点(
π
6,
1
2)在函数y=f(2x+
π
6)的图象上,
∴sin(2×
π
6+
π
6+φ)=
1
2.
即cosφ=
1
2.
∵0<φ<π,∴φ=
π
3.
点评:
本题考点: 三角函数的周期性及其求法;同角三角函数间的基本关系.
考点点评: 本小题主要考查三角函数性质和三角函数的基本关系等知识,考查化归与转化的数学思想方法,以及运算求解能力.