∫sinx*(1 cosx^2)^0.5dx
=∫sinx*√(1 cosx^2)dx
=∫2sin(x/2)*cos(x/2)*√2[cos(x/2)]^2dx
=2√2∫sin(x/2)*[cos(x/2)]^2dx
=4√2∫sin(x/2)*[cos(x/2)]^2d(x/2)
=-4√2∫[cos(x/2)]^2d[cos(x/2)]
=-4√2 [cos(x/2)]^3 /3 C
(注:第三个等号因为x是0到π,所以x/2是0到π/2,所以可以根号开出来不加绝对值)
定积分就自己做
∫sinx*(1 cosx^2)^0.5dx
=∫sinx*√(1 cosx^2)dx
=∫2sin(x/2)*cos(x/2)*√2[cos(x/2)]^2dx
=2√2∫sin(x/2)*[cos(x/2)]^2dx
=4√2∫sin(x/2)*[cos(x/2)]^2d(x/2)
=-4√2∫[cos(x/2)]^2d[cos(x/2)]
=-4√2 [cos(x/2)]^3 /3 C
(注:第三个等号因为x是0到π,所以x/2是0到π/2,所以可以根号开出来不加绝对值)
定积分就自己做