23、在一条直线上依次有A、B、C三个港口,甲、乙两船同时分别从A、B港口出发,沿直线匀速驶向C港,最终达到C港.设甲、乙两船行驶x(h)后,与B港的距离分别为y1、y2(km),y1、y2与x的函数关系如图所示.
(1)填空:A、C两港口间的距离为 km,a= ;
(2)求图中点P的坐标,并解释该点坐标所表示的实际意义;
(3)若两船的距离不超过10km时能够相互望见,求甲、乙两船可以相互望见时x的取值范围
(1)120,;
(2)由点(3,90)求得,.
当>0.5时,由点(0.5,0),(2,90)求得,.
当时,解得,.
此时.所以点P的坐标为(1,30).…
该点坐标的意义为:两船出发1 h后,甲船追上乙船,此时两船离B港的距离为30 km.
求点P的坐标的另一种方法:
由图可得,甲的速度为(km/h),乙的速度为(km/h).
则甲追上乙所用的时间为(h).此时乙船行驶的路程为(km).
所以点P的坐标为(1,30).
(3)①当≤0.5时,由点(0,30),(0.5,0)求得,.
依题意,≤10. 解得,≥.不合题意.
②当0.5<≤1时,依题意,≤10.
解得,≥.所以≤≤1.
③当>1时,依题意,≤10.
解得,≤.所以1<≤.
综上所述,当≤≤时,甲、乙两船可以相互望见.