当n=1时,左边=1^2=1
右边=1*(1+1)*(2+1)/6=1
相符;
设n=k时成立
即:1^2+2^2+…+k^2=k(k+1)(2k+1)/6
则1^2+2^2+…+k^2+(k+1)^2=k(k+1)(2k+1)/6+(k^2+2k+1)
=(2k^3+3k^2+k+6k^2+12k+6)/6
=(k+1)(k+2)(2k+3)/6
=(k+1)[(k+1)+1][2(k+1)+1]/6
即n=k+1时也成立,所以原题得证.
当n=1时,左边=1^2=1
右边=1*(1+1)*(2+1)/6=1
相符;
设n=k时成立
即:1^2+2^2+…+k^2=k(k+1)(2k+1)/6
则1^2+2^2+…+k^2+(k+1)^2=k(k+1)(2k+1)/6+(k^2+2k+1)
=(2k^3+3k^2+k+6k^2+12k+6)/6
=(k+1)(k+2)(2k+3)/6
=(k+1)[(k+1)+1][2(k+1)+1]/6
即n=k+1时也成立,所以原题得证.