设w=x+yi,z=x'+y'i ,x,y,x',y'∈R
|z|^2=x'^2+y'^2=r^2>1
z+1/z=x'+y'i+1/(x'+y'i)
=x'+y'i+(x'-y'i)/r^2
=x'(1+1/r^2)+y'(1-1/r^2)i
∴x=x'(1+1/r^2)
y=y'(1-1/r^2)
∴x'=r^2*x/(r^2+1) ①
y'=r^2*y/(r^2-1) ②
①^2+②^2:
x'^2+y'^2=r^4/(r^2+1)^2*x^2+r^4/(r^2-1)^2*y^2=r^2
∴r^2/(r^2+1)^2*x^2+r^2/(r^2-1)^2*y^2=1
轨迹为椭圆