过A点作BC的垂线,交BC于D点则
AB^2=AD^2+BD^2
AC^2=AD^2+CD^2
AB^2+AC^2=2AD^2+BD^2+CD^2
AM^2=AD^2+MD^2
AD^2=AM^2-MD^2
∴AB^2+AC^2=2AD^2+BD^2+CD^2
=2(AM^2-MD^2)+BD^2+CD^2
=2AM^2+BD^2-MD^2+CD^2-MD^2
=2AM^2+(BD-MD)(BD+MD)+(CD-MD)(CD+MD)
=2AM^2+BM(BD+MD)+CM(CD-MD) ∵AM=CM=1/2BC
=2AM^2+BM(BD+MD+CD-MD)
=2AM^2+BM*BC
=2AM^2+2BM^2
=2(AM^2+BM^2)