1)如图1.
连接DE、DF,AD为直径,则∠AED=90°=∠ADB;又∠BAD=∠BAD.
则△AED∽△ADB,AD/AE=AB/AD,AD^2=AE×AB⑴;
同理△AFD∽△ADC,AD/AF=AC/AD,AD^2=AF×AC⑵.
∴AE×AB=AF×AC
2)如图2.结论依然成立.
过点D作BC的平行线分别交AB、AC的延长线于B',C'.
则AB/AB'=AC/AC',AB×AC'=AC×AB'⑴;
又AD⊥BC,则AD⊥B’C’.连接DE、DF,则1)的结论可知:AE×AB’=AF×AC’⑵
⑴×2)得:AE×AB×(AB'AC')=AF×AC×(AB'×AC')
故:AE×AB=AF×AC.
3)如图3.结论依然成立.
过点D作BC的平行线,分别交AB、AC于B',C'.
则AB/AB'=AC/AC',AB×AC'=AC×AB'⑶;
又AD'⊥BC,则AD⊥B’C’.连接DE、DF,则1)的结论可知:AE×AB’=AF×AC’⑷
⑶×⑷得:AE×AB×(AB'AC')=AF×AC×(AB'×AC')
故:AE×AB=AF×AC.