已知二次函数y=x^2-(m^2+4)x-2m^2-12

1个回答

  • (1)因为y=x^2-(m^2+4)x-2m^2-12

    y=x^2-4x-12-m^2(x+2)

    抛物线都过一定点,即与m的取值无关,故x+2=0,所以:x=-2,此时y=0

    故定点坐标为(-2,0)

    (2)设二次函数y=x^2-(m^2+4)x-2m^2-12 的图像与x轴的交点坐标为(x1,0)和(x2,0),且:x2>x1,则抛物线与x轴两个交点的距离为x2-x1

    又x1、x2可以看作x^2-(m^2+4)x-2m^2-12 =0的两个实数根,即(x-m^2-6)(x+2)=0

    即:x1=-2 x2=m^2+6

    故:x2-x1=m^2+8 故抛物线与x轴两个交点的距离最小值为8.此时m=0