f(x)=-x²-ax+b
=-(x+a/2)²+b+a²/4
f(x)的对称轴为x=-a/2
x∈【-1,1】
当-a/2≤-1.即a≥2时,f(x)在[-1,1]上递减
f(x)max=f(-1)=a+b-1=1
f(x)min=f(1)=-a+b-1=-1
解得a=1矛盾
当-1
f(x)=-x²-ax+b
=-(x+a/2)²+b+a²/4
f(x)的对称轴为x=-a/2
x∈【-1,1】
当-a/2≤-1.即a≥2时,f(x)在[-1,1]上递减
f(x)max=f(-1)=a+b-1=1
f(x)min=f(1)=-a+b-1=-1
解得a=1矛盾
当-1