(1)证明:连接AD,
∵AB是⊙O的直径,
∴∠ADB=90°.
∵点D是BC的中点,
∴AD是线段BC的垂直平分线,
∴AB=AC,
∵AB=BC,
∴AB=BC=AC,
∴△ABC为等边三角形.
(2)连接BE.
∵AB是直径,
∴∠AEB=90°,
∴BE⊥AC,
∵△ABC是等边三角形,
∴AE=EC,即E为AC的中点,
∵D是BC的中点,故DE为△ABC的中位线,
∴DE=
1
2 AB=
1
2 ×2=1.
(3)存在点P使△PBD≌△AED,
由(1)(2)知,BD=ED,
∵∠BAC=60°,DE ∥ AB,
∴∠AED=120°,
∵∠ABC=60°,
∴∠PBD=120°,
∴∠PBD=∠AED,
要使△PBD≌△AED;
只需PB=AE=1.