(1)证明:CC1∥BB1,又BB1⊥A1E,
∴CC1⊥A1E,而CC1⊥A1F,∴CC1⊥平面A1EF,
∴平面A1EF⊥平面B1BCC1
(2)作A1H⊥EF于H,则A1H⊥面B1BCC1,
∴A1H为A1到面B1BCC1的距离,在△A1EF中,A1E=A1F=√2,EF=2,
∴△A1EF为等腰Rt△且EF为斜边,
∴A1H为斜边上中线,可得A1H=1/2EF=1
(1)证明:CC1∥BB1,又BB1⊥A1E,
∴CC1⊥A1E,而CC1⊥A1F,∴CC1⊥平面A1EF,
∴平面A1EF⊥平面B1BCC1
(2)作A1H⊥EF于H,则A1H⊥面B1BCC1,
∴A1H为A1到面B1BCC1的距离,在△A1EF中,A1E=A1F=√2,EF=2,
∴△A1EF为等腰Rt△且EF为斜边,
∴A1H为斜边上中线,可得A1H=1/2EF=1