分析;(1)先求出∠B=60°,再根据旋转的性质得到DC=BD,然后根据等边三角形的判定得到△BCD是等边三角形,从而可得到n=∠BCD=60°;
(2)先求出DF⊥AC,然后根据30°角所对的直角边等于斜边的一半求出DF的长,根据勾股定理求出AC的长度,然后根据等腰三角形三线合一的性质求出FC的长,然后利用三角形的面积公式进行计算即可得解.
(1)根据旋转的性质可得DC=CB=2,
∵∠ACB=90°,∠A=30°,
∴∠B=90°-30°=60°,
∴△BCD是等边三角形,
∴旋转的角度n=∠BCD=60°;
(2)∵∠ACB=90°,∠A=30°,BC=2,
∴AB=2BC=4,
∴AD=4-2=2,
∴AD=CD,
∴∠A=∠DCA=30°,
又∵∠EDC=∠B=60°,
∴DF⊥AC,
∵BC=2,AB=4,
∴AC=4平方-2平方的根号=2倍根号3
∴AF=FC=根号3
∴DF=1
阴影部分的面积=二分之1AF•DF=二分之1根号3
本题考查了30°角所对的直角边等于斜边的一半的性质,等边三角形的判定与性质,勾股定理以及三角形的面积公式,旋转变换的性质,综合题,但难度不大,稍微细心便不难解决.