解题思路:(1)根据三角形的面积求出OA,再写出点A的坐标,然后利用待定系数法求一次函数解析式解答;
(2)根据等腰直角三角形的性质表示出PM,再求出PQ的长,然后利用直角三角形的面积公式列式整理即可得解;
(3)表示出PM、QN,再利用勾股定理列式表示出QM2,再求出MN,然后分MN=QN,MN=QM,QN=QM三种情况列出方程求解即可.
(1)∵点B(2,0),
∴OB=2,
∴S△ABO=[1/2]OB•OA=[1/2]×2•OA=2,
解得OA=2,
∴点A(0,2),
设直线AB的解析式为y=kx+b,
则
b=2
2k+b=0,
解得
k=−1
b=2,
∴直线AB的解析式为y=-x+2;
(2)∵OA=OB=2,
∴△ABO是等腰直角三角形,
∵点P、Q的速度都是每秒1个单位长度,
∴PM=PB=OB-OP=2-t,
PQ=OB=2,
∴△MPQ的面积为S=[1/2]PQ•PM=[1/2]×2×(2-t)=2-t,
∵点P在线段OB上运动,
∴0<t<2,
∴S与t的函数关系式为S=2-t(0<t<2);
(3)t秒时,PM=PB=|2-t|,QN=BQ=t,
所以,QM2=PM2+PQ2=(2-t)2+4,
MN=
2(QN-PM)=
2(t-t-2)=2
点评:
本题考点: 一次函数综合题.
考点点评: 本题是一次函数综合题型,主要利用了三角形的面积,待定系数法求一次函数解析式,等腰直角三角形的判定与性质,等腰三角形的性质,难点在于(3)分情况讨论,用t表示出△MNQ的三边是解题的关键.