从最后的结果看,对xf(x)用中值定理即可.
设F(x)=xf(x),则F(x)在[a,b]上连续,在(a,b)内可导,由拉格朗日中值定理,至少存在一点ξ,使得(F(b)-F(a))/(b-a)=F'(ξ).因为F'(x)=f(x)+xf'(x),所以[bf(b)-af(a)]/(b-a)=f(ξ)+ξf'(ξ)
从最后的结果看,对xf(x)用中值定理即可.
设F(x)=xf(x),则F(x)在[a,b]上连续,在(a,b)内可导,由拉格朗日中值定理,至少存在一点ξ,使得(F(b)-F(a))/(b-a)=F'(ξ).因为F'(x)=f(x)+xf'(x),所以[bf(b)-af(a)]/(b-a)=f(ξ)+ξf'(ξ)