因为f(x)≠0,所以f(0)≠0,
f(x+y)=f(x)f(y)中取x=y=0,得
f(0+0)=f(0)f(0),f(0)=1
f′(x)=lim(h→0) [f(x+h)-f(x)]/h=lim(h→0)[f(x)f(h)-f(x)]/h
=lim(h→0)f(x)[f(h)-f(0)]/h=f(x)f′(0)=f(x)
因为f(x)≠0,所以f(0)≠0,
f(x+y)=f(x)f(y)中取x=y=0,得
f(0+0)=f(0)f(0),f(0)=1
f′(x)=lim(h→0) [f(x+h)-f(x)]/h=lim(h→0)[f(x)f(h)-f(x)]/h
=lim(h→0)f(x)[f(h)-f(0)]/h=f(x)f′(0)=f(x)