∵(1-a)x+(a+1)(y-4)=0
∴定点P(0,4)
设Q(x',y')
则PQ的斜率k=(y'-4)/x' y'=kx'+4 (1)
Q 代入曲线x^2-xy+1=0
x'^2-x'y'+1=0 (2)
(1)代入(2) x'^2-x'(kx'+4)+1=0
x'^2-kx'^2-4x'+1=0
k=(x'^2-4x'+1)/x'^2=1-4/x'+1/x'^2
=(2-1/x')^2-3≥-3
故PQ斜率的取值范围为[-3, +∞)
∵(1-a)x+(a+1)(y-4)=0
∴定点P(0,4)
设Q(x',y')
则PQ的斜率k=(y'-4)/x' y'=kx'+4 (1)
Q 代入曲线x^2-xy+1=0
x'^2-x'y'+1=0 (2)
(1)代入(2) x'^2-x'(kx'+4)+1=0
x'^2-kx'^2-4x'+1=0
k=(x'^2-4x'+1)/x'^2=1-4/x'+1/x'^2
=(2-1/x')^2-3≥-3
故PQ斜率的取值范围为[-3, +∞)